Dołącz do czytelników
Brak wyników

Matematyka inaczej

16 maja 2019

NR 38 (Maj 2019)

Objętość ośmiościanu ściętego na trzy sposoby

0 81

Drukowanie na drukarkach 3D obiektów geometrycznych – obok radości z efektów wydruku – może przynieść jeszcze więcej splendoru z możliwości dydaktycznych w postaci odkrywania ciekawych własności geometrycznych tych obiektów i przystosowania ich do tworzenia interesujących układanek matematycznych.

Przeznaczeniem takich wymyślnych układanek jest na przykład ułożenie z elementów jednego wielościanu innego o tej samej objętości. Nie tylko niosą one za sobą radość z ich układania, ale spostrzegawczemu matematykowi ułatwiają też wykonanie trudnych obliczeń bez skomplikowanych rachunków.

Na ryc. 1 widzimy rozrzucone wielościany. Gdy dokładniej im się przypatrzymy, zauważymy, że są one wszystkie przystające. Jest ich dokładnie osiem. Intuicja podpowiada, że mogą one mieć związek z ośmiościanem foremnym. Ale intuicji nie wolno dowierzać. Czy można z nich coś ułożyć?
 

Ryc. 1


Skoro są jednakowe, to warto je poskładać ze sobą tak, by ich przystające ścianki przylegały do siebie. Zauważmy, że każdy wielościan ma łącznie osiem ścian przystających parami z uwagi na jego symetrię płaszczyznową. W żadnej parze nie powtarzają się przystające ściany.

Odłóżmy cztery z tych wielościanów, a z pozostałych spróbujmy ułożyć jakąś rozsądną figurę, przykładając do siebie przystające ściany. Możemy to uczynić na cztery sposoby, gdyż, jak już wspomnieliśmy, dysponujemy czterema rodzajami ścian. Są to:

  • sześciokąt foremny – ryc. 2A,
  • sześciokąt różnoboczny – ryc. 2B,
  • trójkąt prostokątny duży – ryc. 2C,
  • trójkąt prostokątny mały – ryc. 2D.
Ryc. 2A–D


 Sześciokąt foremny sugeruje, że z tych ośmiu elementów możemy złożyć jedną z brył Archimedesa, np. czworościan ścięty, ośmiościan ścięty, sześcioośmiościan ścięty, dwudziestościan ścięty lub dwudziestodwunastościan ścięty.

Złożenie dwóch brył ścianami sześciokątnymi daje konfigurację, w której dwie ściany są prostopadłe (ryc. 3), a dołożenie do nich jeszcze dwóch o takiej samej konfiguracji pozwala nam dostrzec pół sześcianu (ryc. 4).

Ryc. 3
Ryc. 4

Kolejne cztery identyczne wielościany formują z już ułożonymi pełen sześcian. Krawędzią tego sześcianu jest najdłuższy bok sześciokąta różnobocznego – ryc. 5.
 

Ryc. 5


Inny sposób złożenia otrzymamy dość łatwo – składając ze sobą wielościany ośmiokątami różnobocznymi, najpierw po dwie (ryc. 6), a potem pozostałe dwie. Utworzą one bryłę, która ma dwie prostopadłe płaszczyzny symetrii. Całość prezentuje coś znajomego – ośmiościan ścięty.
 

Ryc. 6


Tak więc osiem wielościanów pokazanych na początku artykułu daje albo sześcian, albo dwie przystające bryły Archimedesa – ośmiościany ścięte (ryc. 7A i B).
 

Ryc. 7A–B


Ta układanka, w samej naturze prosta, może nam posłużyć do wyznaczenie objętości ośmiościanu ściętego. Odkryliśmy już, że:

Oznaczmy przez „a” długość krawędzi sześcianu, z którego powstały dwa ośmiościany ścięte. Ich krawędzie oznaczmy literą x. Poszukajmy relacji między wielkościami a i x. Znajdziemy je, obserwując ścianę, która jest sześciokątem różnobocznym – figura niebieska na ryc. 8.
 



Zauważmy, że:

...

Pozostałe 70% treści dostępne jest tylko dla Prenumeratorów.

Co zyskasz, kupując prenumeratę?
  • 6 wydań czasopisma "Matematyka"
  • Dostęp do wszystkich archiwalnych artykułów w wersji online
  • Możliwość pobrania materiałów dodatkowych, testów i zadań
  • ...i wiele więcej!
Sprawdź

Przypisy